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Abstract 

Patients with chronic kidney disease (CKD) show a panel of partially deregulated serum 

markers indicative for bone metabolism disorders and cardiovascular diseases. This 

review provides an overview of currently reported biomarker candidates at the interface 

of kidney disease, bone metabolism disorders and cardiovascular diseases, and gives 

details on their functional interplay on the level of protein-protein interaction data.  

We retrieved 13 publications from 1999 to 2006 reporting 31 genes associated with 

cardiovascular diseases, and 46 genes associated with bone metabolism disorders in 

patients with CKD. We identified these genes to be functionally involved in signal 

transduction processes, cell communication, immunity and defense, as well as skeletal 

development. On the basis of the given set of 77 genes further 276 interacting proteins 

were identified using reference data on known protein interactions. Their functional 

interplay was estimated by linking properties reflected by gene expression data 

characterizing chronic kidney disease, gene ontology terms as provided by the gene 

ontology consortium, and transcription factor binding site profiles. Highly connected sub-

networks of proteins associated with chronic kidney disease, cardiovascular diseases, or 

bone metabolism disorders were detected involving proteins like collagens (COL1A1, 

COL1A2), fibronectin (FN1), transforming growth factor beta 1 (TGFB1), or 

components of fibrinogen (FGA, FGB, FGG).  

A systems biology approach provides a methodological framework for linking singular 

biomarker candidates towards deriving functional dependencies between clinically 

interlinked diseases. 
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Introduction 

The use of serum biomarkers has been successfully demonstrated in the clinical context 

of cardiovascular diseases and bone metabolism disorders, and their predictive value as 

well as discriminatory power has been well established [1]. Both, - cardiovascular 

diseases and bone metabolism disorders - might be causally linked in patients with CKD, 

since the disturbances of the calcium-, phosphate-, vitamin D-, and  parathyroid hormone 

(PTH) metabolism, as well as the incidence of cardiovascular events as myocardial 

infarction rises early in the course of kidney disease  [2, 3].  

 

Next to established diagnostic and prognostic parameters new biomarker candidates are 

currently arising with astonishing speed, in particular facilitated by genomic and 

proteomic techniques in principle allowing scans of whole transcriptomes and proteomes 

of clinical samples. Experimental procedures for deriving such initial marker profiles 

have traversed towards a routine procedure. The tough part however is the choice of 

those candidates with clinical relevance for further validation studies [4, 5]. Data 

integration, bioinformatics analyses, and functional testing of novel hypotheses drawn 

have been identified as a valuable strategy, commonly denoted in the context of systems 

biology [6].  

Mondry and colleagues emphasized the potential of systems biology and quantitative 

models in their review on the molecular mechanisms of renal osteodystrophy [7]. Drake 

et al. focused on proteomic approaches and the use of protein-protein interaction (PPI) 

data for biomarker discovery in their review on systems biology of cardiovascular 

diseases [8]. 
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This review provides an overview on the suspected link between cardiovascular diseases 

and bone metabolism disorders in patients with impaired renal function, and will 

furthermore characterize and analyze reported biomarkers associated with these particular 

diseases. Subsequently, the interdependency of reported biomarkers will be analyzed on a 

systems biology level taking into account data on gene expression in chronic kidney 

disease, functional gene annotation, protein-protein interactions, as well as gene 

regulatory elements reflected by joint transcription factor binding sites. 

 

Kidney disease and cardiovascular risk 

Chronic kidney disease is associated with increased risk for cardiovascular complications 

and all cause mortality. The risk of death and the prevalence of cardiovascular disease 

(CVD) start to rise significantly already in patients with early stage renal insufficiency, 

i.e. with a glomerular filtration rate (GFR) of less than 60 ml/min [9]. In dialysis patients 

the prevalence of CVD and the mortality due to CVD is even 10 to 30 times higher than 

in the general population [10]. Cardiovascular events in CKD patients are caused by 

traditional and non traditional risk factors and their interactions: Atherosclerosis, 

arteriosclerosis, and altered cardiac morphological characteristics are the main findings 

[11]. These complex characteristics impose a new challenge in identifying and treating 

patients with CVD in early stages of CKD towards improving outcome. So far there are 

no validated biomarkers for identifying the risk of CVD in CKD patients available. As 

for all biomarkers, CVD markers should be easily measurable and significantly 

deregulated in disease states. In statistical terms this constraint refers to adequate 
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discrimination (ROC (receiver operating characteristic)-AUC (area under curve)), as well 

as transportability, i.e. validity of a marker in different patient populations. The 

cardiovascular biomarkers which are discussed in the paper by Roberts et al. are involved 

in several pathophysiological processes such as endothelial dysfunction, vascular 

calcification, monocyte recruitment to the endothelium, inflammation, oxidative stress, 

sympathetic nervous system activation, glycosylation of proteins, bone marrow function, 

platelet activation, left ventricular structure and function, myocardial necrosis and other 

processes [11]. According to the authors an improvement in cardiovascular risk 

stratification might be achieved by measuring a combination of cardiovascular 

biomarkers, each representing a different aspect of CVD pathophysiology. Next to their 

function for assessing the level of risk of vascular disease, biomarkers could depict 

potential targets for the prevention of such disease [12]. However, the link between the 

given CVD biomarker candidates and CKD remains elusive. 

 

Kidney disease and bone metabolism disorders 

The kidney is involved in calcium/phosphate homeostasis which is tightly regulated by 

the phosphate-excretion regulating hormones (phosphatonins) fibroblast growth factor 23 

(FGF23), parathyroid hormone (PTH) and by the action of the active form of vitamin D 

(1α,25-dihydroxy cholecalciferol or calcitriol) which is exclusively synthesized in the 

kidney. In the healthy subject PTH is secreted by the parathyroidea upon hypocalcemia 

and/or hyperphosphatemia. PTH stimulates the release of calcium and phosphate from 

bone tissue, the synthesis of calcitriol in the kidney and the reabsorption of calcium by 

the enteric mucosa and the distule tubule cells in the kidney. On the other hand, PTH 
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increases the excretion of phosphate in by the renal proximal tubule cells. The renal 1-α 

hydroxylation of vitamin D which transforms vitamin D into its active form calcitriol is 

PTH-dependent. Calcitriol increases the enteral and renal calcium and phosphate 

reabsorption and bone mineralization. Finally, FGF23 is a phosphatonin increased by 

high phosphate ingestion. FGF23 enhances fractional renal phosphate excretion and 

inhibits the 1-α hydroxylation of vitamin D thus directly interfering with calcitriol 

synthesis. 

In stage I and stage II of kidney disease, i.e. when GFR is normal or only slightly 

reduced, the levels of calcium, phosphate and PTH in plasma are usually not different 

from healthy individuals [13]. During progression to stage III of chronic kidney disease 

fractional renal excretion of phosphate rises mainly due to phosphate retention and 

subsequent increased levels of the phosphatonins FGF23 and PTH, which keep the serum 

phosphate levels in the normal range [14]. Thus progression of kidney disease causes 

changes in phosphate homeostasis finally leading to a rise in serum levels of PTH which 

is called secondary hyperparathyroidism (sHPT). In addition patients with stage III 

kidney disease frequently suffer from a deficiency in 25-OH-vitamin D3, which leads to 

diminished synthesis of active vitamin D3 [15]. Furthermore, the action of the 1-α-

hydroxylase in the kidney is inhibited by rising levels of FGF23 and by the progression 

of renal insufficiency per se, which finally leads to decreased plasma levels of active 

vitamin D3 [14]. If glomerular filtration rate falls below 30 ml/min (i.e. stage IV and V of 

chronic kidney disease) the excretion of phosphate cannot be enhanced any further and 

hyperphosphatemia develops. 
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sHPT leads to severe changes in bone mineralization and structure, and the term chronic 

kidney disease-mineral bone disorder (CKD-MBD) was coined [16, 17]. However, PTH 

receptors are not only found in kidney, bone and enteric mucosal cells but also in the 

cardiovascular-system. Therefore, sHPT and adjacent vitamin D therapy not only lead to 

CKD-MBD but is also associated with the development of vascular, valvular and 

extravascular calcifications, all increasing mortality [18].  

The degree of bone formation rate (BFR) can be somehow estimated by determining 

plasma levels of several marker proteins. While the plasma levels of bone-specific 

alkaline phosphatase (bAP), osteocalcin (OC) and procollagen type I carboxy-terminal 

extension peptide (PICP) stand for the degree of bone formation, the bone resorption rate 

is represented e.g. by procollagen type I crosslinked carboxy-terminal telopeptide (ICTP), 

plasma deoxypyridinoline (DPD), bone-specific tartrate-resistant acid phosphatase 

(TRAP), and some of the multiple products resulting from the degradation of type I 

collagen [19, 20]. Other circulating molecules are of growing interest as they may also be 

indicative for the bone turnover rate, namely osteoprotegrin (OPG), bone sialoprotein, β2-

microglobulin, cathepsins, nitric oxide, advanced oxidation protein products (AOPPs), 

advanced glycation products (AGEs), cytokines as interleukines (mostly IL-1, IL-6 and 

IL-11), soluble IL-6 receptor, tumor necrosis factor-α (TNF-α), transforming growth 

factor-β (TGF-β), bone morphogenetic proteins (BMPs) and their soluble receptors, 

growth factors such as insulin growth factor-I (IGF-I), macrophage colony stimulating 

factor (MCS-F), and granulocyte-macrophage colony stimulating factor (GMCF-F) [17, 

20].  
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About thirty percent of patients with end stage renal failure exhibit coronary heart disease 

(USRDS registry ‘Annual Data Report 2007 http://www.usrds.org/). At the same time, 

almost all patients with advanced renal impairment show a multifactorial bone disease 

[17, 21]. Progression of each of the three entities is strongest when the other two organ 

systems are malfunctioning. Furthermore, it has recently been shown by a worldwide 

multicenter trial, that traditional markers and risk factors for cardiovascular disease in the 

general population such as hypercholesterolemia, arterial hypertension or elevated body 

mass index exhibit a U-shaped association with cardiac events in patients with end stage 

renal disease [22, 23]. 

Thus based on this evidence the review sought to elucidate the current knowledge of 

molecular markers to uncover and correctly classify the individual risk for this dangerous 

triad. By identifying subjects at risk, potential prophylactic and/or therapeutic measure 

might be taken in time before end organ failure is clinically evident. 

 

Data integration and systems biology analyses 

Data preparation 

Peer reviewed publications (PubMed, http://www.ncbi.nlm.nih.gov/, status as of 

December 2006) were screened for genes or proteins associated with cardiovascular 

diseases or bone metabolism disorders in chronic kidney patients. The following 

keywords were used during the literature search: “biomarker(s)”, “risk factor(s)”, 

“chronic kidney disease”, “renal disease”, “cardiovascular disease”, “cardiovascular 

risk”, and “bone metabolism disorder”. Thirteen publications from 1999 to 2006 covered 

a non-redundant set of in total 73 genes associated with either cardiovascular disease 
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(n=31) or bone metabolism disorders (n=46) in patients with CKD, as summarized in 

table 1 and 2, respectively. Both serum as well as tissue markers were included without 

any restrictions in respect to the method of detection. 

 
Table 1: CVD markers in CKD 
 

Gene Symbol Gene Name Gene ID References 
ADIPOQ adiponectin, C1Q and collagen domain containing 9370 Roberts 2006 [11] 
AHSG alpha-2-HS-glycoprotein 197 Roberts 2006 [11] 
CCL2 chemokine (C-C motif) ligand 6347 Roberts 2006 [11] 
CD40LG CD40 ligand (TNF superfamily, member 5, hyper-IgM syndrome) 959 Roberts 2006 [11] 
CRP C-reactive protein, pentraxin-related 1401 Roberts 2006 [11] 
CST3 cystatin C (amyloid angiopathy and cerebral hemorrhage) 1471 Shlipak 2006 [24] 
EDN1 endothelin 1 1906 Dhaun 2006 [25] 
FGA Fibrinogen, alpha chain 2243 Roberts 2006 [11] 
FGB Fibrinogen, beta chain 2244 Roberts 2006 [11] 
FGG Fibrinogen, gamma chain 2266 Roberts 2006 [11] 
ICAM1 intercellular adhesion molecule 1 (CD54), human rhinovirus 

receptor 
3383 Roberts 2006 [11] 

IL6 Interleukin 6 (interferon, beta 2) 3569 Liu 2006 [26], Honda 
2006 [27] 

IL8 interleukin 8 3576 Roberts 2006 [11] 
LEP leptin (obesity homolog, mouse) 3952 Mallamaci 2005 [28] 
LPA Lipoprotein, Lp(a) 4018 Pernod 2006 [29] 
MTHFR 5,10-methylenetetrahydrofolate reductase (NADPH) 4524 Pernod 2006 [29] 
NPPB natriuretic peptide precursor B 4879 Roberts 2006 [11] 
NPY Neuropeptide Y 4852 Vanholder 2005 [30] 
PAPPA pregnancy-associated plasma protein A, pappalysin 1 5069 Roberts 2006 [11] 
PTH parathyroid hormone 5741 Vanholder 2005 [30] 
RLN1 relaxin 1 6013 Roberts 2006 [11] 
RLN2 relaxin 2 6019 Roberts 2006 [11] 
RLN3 relaxin 3 117579 Roberts 2006 [11] 
SAA1 serum amyloid A1 6288 Roberts 2006 [11] 
SAA2 serum amyloid A2 6289 Roberts 2006 [11] 
SELE selectin E (endothelial adhesion molecule 1) 6401 Roberts 2006 [11] 
SELP selectin P (granule membrane protein 140kDa, antigen CD62) 6403 Roberts 2006 [11] 
TNF tumor necrosis factor (TNF superfamily, member 2) 7124 Roberts 2006 [11] 
TNNI3 troponin I type 3 (cardiac) 7137 Roberts 2006 [11] 
TNNT2 troponin T type 2 (cardiac) 7139 Roberts 2006 [11] 
VCAM1 vascular cell adhesion molecule 1 7412 Roberts 2006 [11] 
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Table 2: Bone markers in CKD  

Gene Symbol Gene Name Gene ID References 
ACP5 acid phosphatase 5, tartrate resistant 54 Schwarz2006 [17] 
ALPL alkaline phosphatase, liver/bone/kidney 249 Rix1999 [19] 
B2M beta-2-microglobulin 567 Schwarz2006 [17] 
BGLAP bone gamma-carboxyglutamate (gla) protein (osteocalcin) 632 Schwarz2006 [17] 
BMP1 bone morphogenetic protein 1 649 Urena1999 [20] 
BMP10 bone morphogenetic protein 10 27302 Urena1999 [20] 
BMP15 bone morphogenetic protein 15 9210 Urena1999 [20] 
BMP2 bone morphogenetic protein 2 650 Urena1999 [20] 
BMP3 bone morphogenetic protein 3 (osteogenic) 651 Urena1999 [20] 
BMP4 bone morphogenetic protein 4 652 Urena1999 [20] 
BMP5 bone morphogenetic protein 5 653 Urena1999 [20] 
BMP6 bone morphogenetic protein 6 654 Urena1999 [20] 
BMP7 bone morphogenetic protein 7 (osteogenic protein 1) 655 Schwarz2006 [17] 
BMP8A bone morphogenetic protein 8a 353500 Urena1999 [20] 
BMP8B bone morphogenetic protein 8b (osteogenic protein 2) 656 Urena1999 [20] 
BMPR1A bone morphogenetic protein receptor, type IA 657 Urena1999 [20] 
BMPR1B bone morphogenetic protein receptor, type IB 658 Urena1999 [20] 
BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) 659 Urena1999 [20] 
COL1A1 collagen, type I, alpha 1 1277 Schwarz2006 [17] 
COL1A2 collagen, type I, alpha 2 1278 Schwarz2006 [17] 
CSF1 colony stimulating factor 1 (macrophage) 1435 Urena1999 [20] 
CSF2 colony stimulating factor 2 (granulocyte-macrophage) 1437 Urena1999 [20] 
CTSL cathepsin L 1514 Schwarz2006 [17] 
FGF23 fibroblast growth factor 23 8074 Fukagawa2006 [16] 
FN1 fibronectin 1 2335 Urena1999 [20] 
GDF5 growth differentiation factor 5 8200 Reddi2000 [31] 
GDF6 growth differentiation factor 6 392255 Reddi2000 [31] 
GDF7 growth differentiation factor 7 151449 Reddi2000 [31] 
IFNG interferon, gamma 3458 Urena1999 [20] 
IGF1 insulin-like growth factor 1 (somatomedin C) 3479 Schwarz2006 [17] 
IL11 interleukin 11 3589 Urena1999 [20] 
IL1A interleukin 1, alpha 3552 Urena1999 [20] 
IL1B interleukin 1, beta 3553 Urena1999 [20] 
IL6 interleukin 6 (interferon, beta 2) 3569 Urena1999 [20] 
LEP leptin (obesity homolog, mouse) 3952 Mallamaci 2005 [28] 
MEPE matrix, extracellular phosphoglycoprotein with ASARM motif (bone) 56955 Schwarz2006 [17] 
PHEX phosphate regulating endopeptidase homolog, X-linked 

(hypophosphatemia, vitamin D resistant rickets) 
5251 Schwarz2006 [17] 

PLAU plasminogen activator, urokinase 5328 Urena1999 [20] 
PTGES2 prostaglandin E synthase 2 80142 Urena1999 [20] 
PTH parathyroid hormone 5741 Fukagawa2006 [16] 
SERPINE1 serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor 

type 1), member 1 
5054 Urena1999 [20] 

SPARC secreted protein, acidic, cysteine-rich (osteonectin) 6678 Urena1999 [20] 
SPP1 secreted phosphoprotein 1 (osteopontin, bone sialoprotein I, early T-

lymphocyte activation 1) 
6696 Urena1999 [20] 

TGFB1 transforming growth factor, beta 1 (Camurati-Engelmann disease) 7040 Urena1999 [20] 
TNF tumor necrosis factor (TNF superfamily, member 2) 7124 Urena1999 [20] 
TNFRSF11B tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin) 4982 Schwarz2006 [17] 
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Four genes are proposed as markers for cardiovascular as well as bone metabolism 

disorders, namely the parathyroid hormone (PTH), the tumor necrosis factor (TNF), 

leptin (LEP), as well as interleukin 6 (IL6).  

 

Functional annotation 

Functional categories as well as molecular pathways holding a significant number of 

genes were identified using the Gene Expression Data Analysis Tool of the PANTHER 

(Protein Analysis THrough Evolutionary Relationships) Classification System [32, 33], 

and are listed in table 3 and 4. In PANTHER proteins are assigned to families and 

subfamilies of shared function with two main categories, namely molecular function and 

biological process. Biological processes and molecular functions of our candidate genes 

were compared with the PANTHER-internal reference dataset holding all 25,431 

currently annotated human genes. A chi-squared test including Bonferroni correction to 

account for multiple testing was applied to compare the ratio of expected to observed 

frequency of genes assigned to certain ontology categories. This procedure identifies if 

certain ontologies are over- or underrepresented on the basis of the given gene lists. 

  

For both diseases, CVD and bone metabolism disorders, genes involved in the category 

‘signal transduction’ were predominant. 20 out of the 46 bone metabolism disorder 

biomarker candidates and 14 out of the 31 cardiovascular disease marker candidates were 

assigned to this functional category. The most significantly enriched biological processes 

in CVD have been identified as immunity and defense (14 genes), blood circulation and 

gas exchange (5 genes), as well as cell communication (11 genes). Due to the fact that 
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several bone morphogenetic proteins are in the list of bone metabolism markers, the most 

significantly enriched biological processes in bone metabolism disorders are skeletal 

development (15 genes), mesoderm development (17 genes), and developmental 

processes (20 genes). The complete listing of all significant biological processes, 

molecular functions and biological pathways of the 77 biomarker candidates is given in 

tables 3 and 4 for cardiovascular and bone metabolism disorders, respectively. 

 

Table 3: Functional classification of CVD markers  

Biological Process REFLIST (25431) CVD markers (31) p-value 

Immunity and defense 1318 14 3.58E-09 

Blood circulation and gas exchange 89 5 2.56E-06 

Cell communication 1213 11 1.46E-05 

Signal transduction 3406 14 5.14E-04 

Blood clotting 92 4 7.23E-04 

Ligand-mediated signaling 421 6 2.10E-03 

Cytokine and chemokine mediated signaling pathway 252 5 2.59E-03 

Cell proliferation and differentiation 1028 7 6.10E-03 

Apoptosis 531 5 1.33E-02 

Cell surface receptor mediated signal transduction 1638 9 1.51E-02 

    

Molecular Function REFLIST (25431) CVD markers (31) p-value 

Signaling molecule 795 18 3.29E-18 

Peptide hormone 102 9 8.05E-13 

Extracellular matrix 384 4 3.42E-02 

Cytokine 97 3 3.71E-02 

Cell adhesion molecule 395 4 3.80E-02 
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Pathway REFLIST (25431) CVD markers (31) p-value 

Plasminogen activating cascade 21 4 1.88E-06 

Blood coagulation 55 4 8.61E-05 

  

Table 4: Functional classification of Bone markers  

Biological Process REFLIST (25431) Bone markers (46) p-value 

Skeletal development 123 15 1.63E-21 

Mesoderm development 551 17 7.12E-15 

Developmental processes 2152 20 6.98E-09 

Cell communication 1213 16 2.61E-08 

Cytokine and chemokine mediated signaling 

pathway 252 9 1.44E-07 

Ligand-mediated signaling 421 9 1.17E-05 

Cell surface receptor mediated signal transduction 1638 15 1.48E-05 

Signal transduction 3406 20 1.76E-05 

Other receptor mediated signaling pathway 210 5 7.86E-03 

Immunity and defense 1318 9 1.60E-02 

Macrophage-mediated immunity 140 4 1.81E-02 

    

Molecular function REFLIST (25431) Bone markers (46) p-value 

Signaling molecule 795 26 6.55E-26 

Growth factor 125 9 2.52E-10 

Cytokine 97 8 1.65E-09 

Other signaling molecule 259 7 6.91E-05 

Interleukin 34 3 6.95E-03 

Extracellular matrix 384 5 1.86E-02 

    

Pathway REFLIST (25431) Bone markers (46) p-value 

TGF-beta signaling pathway 154 16 3.58E-22 
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Protein-protein interaction network analysis 

Next to identifying joint functional categories we used human protein-protein interaction 

data to determine the connectivity of the 77 biomarker candidates on the level of cellular 

protein networks. Human protein-protein interaction data from OPHID (Online Predicted 

Human Interaction Database) were used for the analysis (OPHID Version 2007-02-17) 

[34]. The generation of interaction networks followed the next neighbor expansion 

method as proposed by Chen et al. [35]. OPHID represents protein interactions as protein 

A interacts with protein B. If A and B are members of the list of 77 candidates a positive 

interaction is identified. The next neighbor expansion includes also interactions of the 

type A-X-B, where X represents a protein not given in the initial candidate list. All 

interacting partners of the initial set of 77 proteins were extracted from the OPHID 

database and the protein interaction network was generated. At least one interacting 

partner was found for 29 of the 31 CVD, and for 38 of the 46 bone metabolism markers. 

The resulting graph, composed of one large sub-graph and a number of smaller, 

disconnected sub-graphs, consisted of 353 protein nodes and 440 protein interaction 

edges, as depicted in figure 1a. 
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Figure 1: (a) Protein interaction networks after next neighbor expansion as given by the 

candidate biomarker lists of 77 proteins: Protein nodes given in blue depict bone markers, 

protein nodes given in red denote markers of cardiovascular disease, and protein nodes 

given in yellow represent proteins reported in both diseases. (b) Network complexity of 

protein interaction networks: Given is the index of aggregation (IA; y-axis) in relation to 
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the number of proteins used for constructing protein interaction networks (x-axis). The IA 

of protein interaction networks derived on the basis of randomly generated protein lists is 

given as reference (solid line, dashed lines gives the standard deviation). The IA for 

networks based on the list of cardiovascular marker candidates alone does not exceed 

values also derived for randomly generated protein lists. The IA for networks derived for 

the given bone metabolism disorder markers, but in particular the combined markers 

significantly exceed reference values as found for randomly generated lists with the same 

number of proteins involved. 

 

The Index of Aggregation (IA) serves as aggregation and complexity measure of 

interaction networks for evaluating if the interaction characteristics differ with respect to 

networks derived on the basis of random protein lists. This measure therefore gives an 

indication if the connectivity for a given protein list is higher than statistically expected. 

The IA is given as percentage of protein nodes in the largest sub-graph with respect to all 

protein nodes in the network including all sub-graphs. The IA of the biomarker 

candidates’ network given in figure 1 was compared to respective values of randomly 

generated protein lists. 43 of the 63 proteins which actually have interaction entries in the 

OPHID database were connected in a single sub-graph when including next neighbor 

expansion. The resulting index of aggregation of 0.68 for the combined list of potential 

biomarkers (CVD and Bone) is more than 2 standard deviations above the expected IA 

for randomly generated networks of equivalent size. Figure 1b shows the IA of the given 

biomarker lists in comparison to the distribution of the IA for randomly generated protein 

lists. Genes associated with cardiovascular diseases and those associated with bone 

metabolism disorders are highly interlinked on the level of protein-protein interactions. 
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Both, functional categories as well as protein interactions indicate the interrelation of 

biomarker candidates for CVD and bone metabolism disorders. 

 

Integrated analysis 

For further characterizing the interrelation between all 353 members of the interaction 

network represented by the largest sub-graph as given in figure 1 we extracted the 

following information for each single gene: The gene expression profile as found in 

chronic kidney disease biopsy material published by Rudnicki et al. [36], as well as gene 

ontology terms on molecular process and function as provided by the gene ontology 

consortium [37, 38]. Additionally, we computed the transcription factor binding site 

profiles for each of the genes following in-silico predictions as provided by the 

oPOSSUM tool [39, 40]. This procedure provides a list of transcription factors for each 

gene which appear to be involved in its differential regulation. Genes sharing 

transcription factors might be under similar expression control. 

After assembling this set of properties for each of the 353 genes we computed pair-wise 

correlations including the parameters gene expression, functional category, and 

transcription factor modules. Rationale of this approach is the assumption that genes 

showing similarities on the level of these features might exhibit an increased likelihood 

for functional dependency in the context of cellular processes.  

For characterizing co-expression of two genes we used the Pearson correlation 

coefficient. Two genes exhibiting a high correlation coefficient of their expression profile 

are co-expressed on the level of differential gene expression. For expressing the pair-wise 

similarity of two genes based on their gene ontology classification patterns the Dice 
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coefficient for bit-strings was calculated. This string comparison measure determines the 

ratio of joint annotation within given categories and the total number of annotations in 

categories. High values of the Dice coefficient found for a given biomarker candidate pair 

indicate similarity on the level of functional categorization. The same measure was used 

for identifying the ratio of joint transcription factors indicating co-regulation between two 

genes. A meta-correlation based on the three single parameters was finally calculated for 

expressing functional dependency between elements of our biomarker candidate list.  

Applying this procedure provides correlation values for each interaction pair of the 

interaction graph given in figure 1. For subsequent analysis we focused on ‘strong’ pair-

wise interactions, defined as meta-correlation values which were found as at least one 

standard deviation above the mean value of all meta-correlation values for all pairs 

analyzed. Figure 2 identifies these strong interactions as thick interaction lines. 

 

Figure 2: Detailed representation of the largest sub-graphs of the protein interaction 

network derived on the basis of 77 candidate markers. Only nearest neighbors having two 

edges to the CVD and bone marker candidates are shown. Protein nodes given in blue 

depict markers for bone metabolism disorders, protein nodes given in red hold markers of 

cardiovascular disease, and nodes given in yellow represent proteins reported in both 

diseases. 
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Based on the protein interaction networks, and following the dependency measure 

expressed by the meta-correlation we identified two sub-networks, each connecting at 

least four of the reported biomarkers given in the initial list of 77 candidate biomarkers. 

The first sub-network holds the proteins fibronectin 1 (FN1), collagen, type I, alpha 2 

(COL1A2), the plasminogen activator, urokinase (PLAU), and osteonectin (the secreted 

protein, acidic, cysteine-rich; SPARC). They were all reported to play a role in bone 

mineral disorders of patients with chronic kidney disease. FN1 is involved in various 

processes like cell adhesion and blood clotting, and has also been proposed as risk factor 

for arterial thrombosis [41]. SPARC regulates cell interactions with components of the 

extracellular matrix and is often found at sites of injury [42]. COL1A2 is mostly found in 

connective tissues and mutations in this gene regions were reported to lead to a variety of 

bone metabolism disorders including idiopathic osteoporosis, ostoegenesis imperfecta, or 
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the Ehlers-Danlos syndrome [43, 44]. Besides its function in hemostasis PLAU is also 

involved in cell attachment and deformation of the extracellular matrix [45]. 

 

Members of the second sub-network are collagen, type I, alpha 1 (COL1A1), the 

transforming growth factor beta 1 (TGFB1), the plasminogen activator inhibitor, also 

known as serpin peptidase inhibitor, clade E (SERPINE1), and the alpha, beta, and 

gamma chains of fibrinogen (FGA, FGB, FGG). COL1A1 is like COL1A2 found in most 

connective tissues. TGFB1 is a multifunctional protein involved in proliferation, 

differentiation, apoptotic processes, cell adhesion, and tissue remodeling [46]. 

SERPINE1 plasma concentrations are elevated in patients with increased risk of ischemic 

cardiovascular events [47]. All three chains of fibrinogen are part of the network. After 

cleavage by thrombin, fibrin fibers form blood clots after vascular injury. 

 

Conclusion and Outlook 

We provide an interactome analysis approach to characterize the interplay of reported 

biomarker candidates for cardiovascular diseases and bone metabolism disorders in 

chronic kidney disease patients. 46 potential biomarkers for bone metabolism disorders 

and 31 potential biomarkers for cardiovascular disease were identified in the literature 

and characterized with respect to biological function, gene expression in chronic kidney 

disease, and known protein-protein interactions. 

A majority of marker candidates for cardiovascular diseases could be assigned to the 

functional category ‘immunity and defense’, whereas most of the bone metabolism genes 

were involved in skeletal and mesoderm development according to the PANTHER 
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classification scheme. A category significantly enriched in both diseases was ‘signal 

transduction’ with various secreted signaling molecules being proposed as potential 

biomarkers. On the level of protein-protein interactions proteins involved in bone 

metabolism disorders were highly interlinked. The resulting Index of Aggregation was 

significantly higher than one would expect from randomly drawn gene lists. Biomarker 

candidates of cardiovascular diseases were also closer connected as randomly generated 

gene lists although the statistical significance was not reached. The combined list of 

marker candidates from both diseases on the other hand was highly significant with 

around 68% of biomarkers forming the largest sub-graph of the overall protein-protein 

interaction network. Functional links of biomarkers proposed for CVD and bone 

metabolism disorders appears evident at least on this given level of data interpretation. 

Of special note are the four potential biomarkers reported in both diseases, namely IL6, 

PTH, LEP, and TNF, as well as the three components of fibrinogen (FGA, FGB, and 

FGG) building a major link between the two diseases as indicated by strong interactions 

based on the meta-correlation as depicted in figure 2. Although causal inference cannot 

be drawn form our data, the coincidence of features in both disease entities may 

potentially suggest choreographed action via a common pathway. 

Integration of data from various sources for characterizing diseases has the potential to 

unravel novel pathophysiological mechanisms. As more and more tools become available 

for predicting protein-protein interactions based on protein domain information, the in 

silico validation of given protein candidates, but also identification of novel proteins 

playing a role in a given disease will become feasible [48, 49]. This development allows 
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the analysis of the functional interplay between biomarker candidates, clearly providing 

routes towards identifying improved candidate markers. 
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